## MATH 254 - Introduction to Ordinary Differential Equations

Credits, contact hours, categorization of credits:

## Instructor's or course coordinator's name:

Textbook, title, author and year:

## Other Supplemental materials:

## 2021-2022 catalog description:

## Prerequisites:

## Co-requisites:

## Required, Elective, or Selected Elective:

Instruction Outcomes:

Student Outcomes:

Topics covered:

3 credits, 45 contact hours, Math

Various courses and instructors

Fundamentals of Differential Equations by Nagle, Saff and Snider. The book is delivered digitally via D2L (under content) through the Inclusive Access program.

Notes and supplementary material will be posted on D2L.

Solution methods for ordinary differential equations, qualitative techniques; includes matrix methods approach to systems of linear equations and series solutions. Examinations are proctored.

MATH 129, 223 or 250 A with C or better.

None

Required

Students who complete the course will be able to solve and approximate a solution to linear differential equations (both scalar equations and systems of equations) using a variety of techniques.

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

- Intro, classification, solutions, IVT, E\&U (1.1, 1.2)
- Direction fields (1.2, 1.3), Phase line, equilibrium analysis of autonomous DE.
- 1st order: separable (2.2), linear (2.3)
- Generalize idea of transformation and substitution (2.2-2.6)
- Modeling and compartmental analysis
- 2nd Order linear DE: mass-spring oscillator (4.1); Homogeneous linear equation $(4.2,4.3)$
- Homogeneous linear equation continue(4.3)
- Structure of solutions to linear DE (a little linear algebra), expected structure of solution to non-homogeneous DE.
- Response to forcing/ particular solution. Method of undetermined coefficients. (4.4)
- Computation using complex exponentials; Superposition Principle (4.5)
- Variation of Parameters (4.6)
- Series solutions (some of chapter 8)
- Reduction of higher order DE to system of first order DE (some of chap 6)
- linear system, matrix equation $(9.1,9.3)$ Normal form (9.4) LHCC system by eigensystem (9.5-9.6)
- Continue LHCC system by eigensystem (9.6) Phase portraits of linear system (5.4);
- Applications to system
- Nonlinear system, linearization around fixed points, phase portraits.
- Laplace transform: definition, linearity, table (7.1, 7.2)
- Transform of piecewise functions, properties of transforms (7.2,7.3)
- Inverse transform, solving IVP with Laplace
- Convolution, transfer function

