MSE 345 - Thermodynamics

Credits and contact hours:	4 credits and 60 contact hours.
Indicate: math, basic science, engineering topic or other	Engineering topics
Instructor's or course coordinator's name:	Dr. Pierre Lucas, David Poirier
Textbook, title, author and year:	<u>Thermodynamics in Materials Science</u> , Robert DeHoff, 2 nd Edition, Taylor & Francis 2006
	<u>Thermodynamics, Statistical Thermodynamics, & Kinetics,</u> Thomas Engel, Philip Reid, 2 nd Edition, Pearson 2010
	<u>Physical Chemistry</u> , Peter Atkins, Julio De Paula, 9 th Edition, Freeman 2010
Other Supplemental materials:	
2016-2022 catalog description:	Introduction to the laws of thermodynamics, entropy, free energy, and the concept of equilibrium as applied to materials for conventional and advanced technological applications.
Prerequisites:	CHEM 151, MATH 129 or consult department before enrolling
Co-requisites:	None
Required, Elective, or Selected Elective:	Required
Instruction Outcomes:	 Develop an understanding and working knowledge of 1st and 2nd laws of thermodynamics. Develop a working understanding of least square regression for data fitting. Demonstrate an ability to read unary, binary, and ternary phase diagrams. Develop ability to express any change in a thermodynamic state property of a single phase as a function of any other 2

state properties (DeHoff technique).

- 5. Demonstrate an ability to utilize the Gibb's Phase Rule as applied to phase diagrams and chemical equilibrium.
- 6. Develop an understanding and working knowledge of calorimetry.
- 7. Demonstrate an ability to conduct chemical equilibrium calculations, including temperature dependence of chemical reactions.
- 8. Develop the ability to use thermodynamic database to perform thermochemical calculations.

Student Outcomes -

Listed in Criterion 3 or any other outcomes are addressed by the course:

Topics covered:

- To produce graduates who can:
 - an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
 - an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
 - an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
 - Introduction and Definitions of Thermodynamic Variables (4)
 - 1^{st} and 2^{nd} Law (2)
 - DeHoff method (3)
 - Heat Capacity, calorimetry and Thermochemistry (6)
 - Clausius's Inequality and Unary Phase Diagrams (4)
 - Partial molar quantities, chemical potential and colligative properties (4)
 - Binary phase diagrams (7)
 - Chemical Equilibrium and its Temperature Dependence (4)
 - Activity and Electrochemistry (3)
 - Electrochemical Devices (2)