MSE 365– Physical Properties of Materials

Credits and contact hours:	3 credits and 45 contact hours
Indicate: math, basic science, engineering topic or other	Engineering Topic
Instructor's or course coordinator's name:	Dr. Krishna Muralidharan and Dr. Pierre Deymier
Textbook, title, author and year:	Online course material
Other Supplemental materials:	 The Oxford solid state basics, Simon Electronic properties of materials, <i>Hummel</i> Introduction to solid state physics, <i>Kittel</i> Introduction to the physics and chemistry of materials, <i>Naumann</i> The physics and chemistry of solids, <i>Elliot</i>
2021-2022 catalog description:	Introductory solid-state theory for describing thermal, electrical, optical and magnetic properties of materials.
Prerequisites:	MSE 222 and 223R.
Co-requisites:	None
Required, Elective, or Selected Elective:	Required
Instruction Outcomes:	 (1) Develop a physical and theoretical understanding of the properties of materials including thermal, electrical (conductors and semiconductors), dielectric and magnetic properties (2) Know orders of magnitude of specific properties for various classes of materials (3) Develop a working knowledge regarding the relationship between properties and structure, especially the electronic and atomic structure (4) Improve student's material literacy
Student Outcomes –	To produce graduates who can: ✓ 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

Listed in Criterion 3 or any other outcomes are addressed by the course: \checkmark 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

 \checkmark 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

 ✓ 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

 \checkmark 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Topics Covered:

- 1 Introduction
 - Mathematical concepts: solution to the wave equation
 - lattice structure of solids: classification, reciprocal lattices, x-ray diffraction

2. Thermal properties of materials

- periodic systems: phononic band structure of solids using a mass-spring representation
- introductory statistical mechanics
- heat capacity: Einstein's model, Debye model
- thermal expansion
- thermal conductivity

3. Electronic properties of materials

- Elementary quantum mechanics: particle in a box.
- Fermi electron gas: electronic heat capacity, cohesive energy
- Drude-Lorenz models
- electrons in periodic solids: electronic band structure-materials classification
- superconductivity
- semiconductors: intrinsic and extrinsic semiconductors, semiconductor devices
- electron dynamics: scattering, electrical conductivity, thermal conductivity and thermoelectric materials
- dielectric materials: capacitors, batteries, polarization, ionic materials, piezoelectricity

4. Optical properties of materials

- optical properties of electrons in solids: photoluminescence, Laser, LEDs, quantum dots, photovoltaics
- 5. Magnetic properties of materials
 - diamagnetism, paramagnetism, ferromagnetism
 - Technological applications
- 6. Special topic: Nano-materials